
IoT Testbed Security: Smart Socket and Smart
Thermostat

Meriem Bettayeb
Department of Electrical and Computer Engineering

University of Sharjah
Sharjah, UAE

u17105766@sharjah.ac.ae

Omnia Abu Waraga
Department of Computer Science

University of Sharjah
Sharjah, UAE

u17105683@sharjah.ac.ae

Manar Abu Talib
Department of Computer Science

University of Sharjah
Sharjah, UAE

mtalib@sharjah.ac.ae

Qassim Nasir
Department of Electrical Engineering

University of Sharjah
Sharjah, UAE

nasir@sharjah.ac.ae

Omar Einea
Department of Computer Science

University of Sharjah
Sharjah, UAE

u14111378@sharjah.ac.ae

Abstract—Internet of Things (IoT) technology is changing the
shape of our lives, however they are raising many security
issues. Attackers can exploit the security vulnerabilities of IoT
devices for malicious ends. Assessing the security of IoT devices
is important before they are distributed to reduce the attack
surface. However, the security assessment could be difficult due
to the wide variety of IoT devices and their functionalities.
Moreover, replicating the testing scenarios and environments can
be challenging without a fully documented test scenario. The
aim of this research is to design a structure for an IoT security
testbed that can analyze the vulnerabilities of IoT devices. The
paper provides a road map for an easy-to-setup IoT Security
Testbed and a general methodology for constructing the testbed.
The structure includes the hardware and software setup as well
as a testcase template that standardizes test cases and ensures test
replication. Moreover, a simple GUI was developed for managing
the test cases, launching them and reporting their results. To
showcase the feasibility of the testbed structure proposed, three
test cases have been launched on a smart socket and smart
thermostat followed by a discussion on assessment results.

Index Terms—Internet of Things (IoT), testbed, attacks, vul-
nerabilities, security, smart socket, smart thermostat

I. INTRODUCTION

The Internet of Things (IoT) is a recent technology so-
lution for many sectors. It enables communication between
embedded devices to meet our requirements. IoT technology
is considered to be one of the main components for so-called
smart cities. IoT is rapidly emerging because of the benefits
to citizens, government and the environment [1].

As the importance of these devices increases, security
issues increase as well. Many kinds of attacks have been
discussed in the IoT literature. One of the most important
is the man-in-the-middle (MITM) attack. The MITM attack
is about gaining non-authorized access over a communication
channel between two entities, enabling unauthorized session
and communication modification. A survey was conducted and
provided a detailed analysis and comparison of most of the

Thanks to Dubai Electronic Security Center for funding this research

MITM techniques and solutions in [2]. This attack was used
in our research into IoT testbed security.

The contribution of this paper is to define a testbed for
building and testing selected IoT devices, using suitable pen-
etration tools, so as to discover the security issues in IoT
devices and detect their vulnerabilities. Penetration testing was
conducted on the smart socket to determine its vulnerability
to specific kinds of attacks. Our main goal was to construct
a detailed, step-by-step road map for penetration testing. This
was subsequently used to test another smart IoT device, the
smart thermostat.

The testbed proposed serves as a testing software to organize
penetration testing process. It enables developers to easily set
up the hardware component and software tools. The test cases
are formulated to list an informative description of the test
case along with the descriptive explanation for the expected
results and outcomes of the test. Test case also defines the
testing environment such as network and hardware structure,
software tools used as well as listing the devices involved with
their roles. Furthermore, it describes clearly what the initial
status of the system and devices involved before launching
the test. All of this helps the developer in recreating the same
environment and easily compare the results obtained with the
expected results mentioned in the test case description.

The structure of the paper is as follows: Section 1 presents
an introduction to IoT security and Section 2 shows the state
of art for IoT vulnerabilities. Section 3 shows the methodology
while Section 4 details the experimental setup for testing the
IoT devices and the results are discussed in Section 5. Finally,
the conclusion is section 6.

II. RELATED WORK

There are many types of IoT devices in the market and
multiple security analyses have been proposed to check the
vulnerabilities of these devices. A case study on the security



of the August Smart Lock by Ye et al. [4] demonstrated vulner-
abilities that included handshake key leakage, owner account
leakage, personal information leakage, and DoS attacks

Gyory et al. [5] described the security bugs found in the
SmartThings framework and proposed an IoTOne solution.
The paper solved the problem of a third party that has privi-
leged access to SmartThings devices. However, the solution is
not compatible with all SmartThings devices. Ammar et al. [9]
also conducted a comprehensive analysis on Samsung Smart-
Things and Apple HomeKit, as well as IoT frameworks such
as AWS IoT Amazon and Azure IoT Microsoft. Furthermore,
Prokofiev et al. [6] proposed a logistic regression method,
which analyzes IoT devices and their network characteristics
to provide a probability of botnet attack on IoT devices.

Sachidananda et al. [7] introduced a security testbed for
IoT devices for analyzing security issues. This testbed spec-
ifies the architecture and design requirements that supports
development of penetration testing for security analysis. The
penetration testing included port scanning, fingerprinting, pro-
cess enumeration, and vulnerability scanning.

Chistiakov et al. [8] developed a new design using an Elec-
trically Erasable Programmable Read-Only Memory (EEP-
ROM) chip. The improved design included authentication for
the user over the HTTPS channel. It, also, included the security
characteristics of Bluetooth Low Energy (BLE) for securing
short range communication between the mobile and the smart
lock. Moreover, Thomas et al. [10] focused on assessing the
security of BLE devices. They tested the security of smart
watches manually using Wireshark, Kismet and Crackle.

Ling et al. [11] reversed communication of smart socket
and found insecure communication protocols, lack of device
authentication, weak password policy and device scanning.
This allowed them to perform the brute force, spoofing and
firmware modification attack.

Ling et al. [12] analyzed communication protocols and
architecture of Edimax IP camera and demonstrated their
vulnerabilities. This allowed them to perform the brute force,
spoofing and firmware modification attack. Moreover, Ser-
alathan et al. [13] analyzed IP camera traffic to perform
network analysis and MITM. The authors brute force port
RTSP to get video streams and reverse engineer the mobile
application. Whereas, XU et al. [14] used Insecam website to
retrieve open cameras with live streams.

Huraj et al. [15] created a reflected UDP-based DoS attack
using IoT devices. Siboni et al. [16] compromised smart
watch to impersonate a legitimate Wi-Fi printer to leak secret
documents. Moreover, Classen et al. [17] analyzed many
security vulnerabilities and attacks on Fitbit smartwatch. They
were able to inject compromised firmware and modify the
Fitbit’s mobile app to access developer mode and gain access
to cloud.

In this paper, we propose an IoT security testbed and define
its main component and structures, based on open source
tools making it repeatable and adjustable. We then apply it
to two off-the-shelves IoT devices by constructing test cases
and scenarios. We analyze the results and report the device

vulnerability. We also demonstrate a hacking attempt on the
vulnerable device.

III. METHODOLOGY

Building a security testbed for IoT devices requires defining
the main region of interest as well as developing a road map
for the analysis process. As seen in the previous section, the
literature review we conducted helped us to understand the
foundation of testbed structure and testing methodology. This
enabled us to define the structure and components of our IoT
security testbed that fulfills the requirements and objectives of
security testing.

In this section, a proposal for a testbed structure was
presented based on practical experience which includes the
use of open source tools. The main structural components of
our proposed IoT security is described in Table I. The testbed
was used to examine various types of smart devices such as
the smart Socket and the smart Thermostat.

TABLE I
COMPONENTS OF IOT TESTBED

Structural
components

Description

Testing environment Defines the environment required to test the
device under investigation.

Required devices and
tools

List of all the devices and tools needed in the
testbed and their role.

Testing scenarios Defines testing scenarios with detailed
tasks/tests.

Initial assumptions Sets initial assumption about all devices involved
in each test.

Audit results Audits the results of each test.
Automatically run
tests

Runs the selected test cases automatically based
on test operator preference.

Report generation Generates a report for results of selected tests.

A. Testing Environment and Devices

Defining the testing environment required to test the Device
Under Investigation (DUI). This is due to the direct impact of
the environment on the performance and behavior of the DUI.
Defining the environment includes describing the network
structure and the geographical context, since the DUI may
be affected by location or other environmental factors. In
addition, all the devices and tools involved in the testbed must
be listed and described. The security testbed uses a variety of
software tools for analyzing network activity, such as: Nmap
network scanner, Wireshark network analyzer, Ettercap tool,
and many other tools available on the Kali Linux operating
system. The testbed includes several devices, including:

• Triggering device that sends the control commands and
affects the device status.

• Controller and auditor device that controls the flow of
test cases and audits network activities and performance
as well as the DUI responses. The device also generates
reports on the results of each test in a readable format
for the user.



• Testing device that has the attacking tools and software.
Also, the tools required, as well as their purpose, are
described for each test case.

B. Scenarios and Tests
Another important component of IoT security is scenarios

and tests. The IoT testbed should include various testing
scenarios that can tackle different aspects of DUI security.
Each scenario should have one or more tests that can break
the scenario into manageable steps. A test is a simple task or
step performed on the DUI or on the environment to explore
the response of the DUI. Defining the tests includes defining
all the tools required for it.

Moreover, for each group of tests, assumptions about the
devices need to be clearly stated. Reports of the results,
including possible consequences of each test needs to be
clearly presented. Creating such a reporting structure facilitates
the ability of other researchers to repeat the experiment, or use
some components in later testing.

C. Testbed Controller Software
To control the flow of the testbed, a Graphical User Inter-

face (GUI) was created to automate the testing process. The
program was written in the open source python programming
language. Many open source software tools, available as
editors for python, provide convenience and ease in developing
scripts. Kali Linux also has several libraries such as Nmap,
Wireshark as well as the command library which enables
execution of Linux command lines. PyQt5 library was used
to create the GUI for the operator who selects and runs
the tests. The program enables execution of one or multiple
tests according to the testing requirements and generates an
exportable report of the test results.

The program classifies IoT devices based on category, such
as smart socket, smart thermostat, etc., where one or more
IoT products are listed under each category. The smart socket
and Smart Thermostat were tested using the GUI, as it will be
explained in the next section. Therefore, the controlling scripts
have been added as well to the GUI. The GUI structure and
features are shown in Fig. 1. The GUI allows the users to
choose among a list of IoT devices categories or types. Based
on the category chose, another list of products of this specific
category will be listed to allow the users to choose one brand.
By choosing one of the brands, a list of related test cases will
be shown to the user where they can choose one or more tests
to be launched by the testbed.

The advantage of writing our own program rather than using
conventional testing software was the ability to add our own
features to the program as well as being able to modify and
update it more frequently. One of the important advantages of
the python language is that it can run on almost all operating
systems, which gave us the freedom to choose the auditing
device that best suits our test.

IV. EXPERIMENTAL SETUP

In this section It is described how the testbed structure was
utilized for a real implementation and applied it to two IoT

Fig. 1. Graphical user interface for IoT testbed software

devices. Our lab was configured to include all necessary tools
to support the testbed during testing. The testbed components
are illustrated in Fig. 2. The structure consists of the auditing
machine that has the GUI which runs and controls the test
cases as well as an attacking machine that is equipped with
penetration testing tools such as Ettercap, Wireshark and
Nmap. All the machine in addition to the IoT devices are
connected to a secure WPA2 wireless network created by the
router.

There are two objectives for the testbed: first, to analyze
some of the network characteristics of the DUIs. This required
examining the devices using Nmap to scan the open UDP
and TCP ports as well as investigating the services hosted on
them. Nmap reports information about the OS of a device
and its particular version. In addition, Wireshark tool was
used to analyze and classify the packets in the network. It
also provided a flow tracing whether for TCP session or UDP
packets. The second objective was to attempt to extract the
control messages sent to the IoT through the network. As
for the network structure, the trigger and smart device were
connected to the same network so they communicate using
MAC addresses rather than having to identify them using IP
addresses. Wireshark might fail to examine packets between
two entities if it is not be able to sniff the packets generated.
Therefore, Ettercap was used to intercept the communication
between the two devices and applied ARP spoofing.

ARP stands for Address Resolution Protocol. ARP spoofing
or ARP poisoning is a type of attack where a malicious party
sends wrong ARP messages through a Local Area Network
(LAN). The attacker’s MAC address can then attach to the IP
address of a legal computer on the network. Hence, the attacker
will receive any data intended for the authentic IP address.
ARP spoofing allows illegal actors to intercept, modify or
even stop data in-transit. This attack can occur on LANs that
employ ARP. Ettercap tool was used for this attack. It is a free
open source tool used to perform MITM and other spoofing
attacks on a local area network. It runs on various Unix-like
operating systems such as Linux, Mac OS X, Solaris and
Windows.

Using the testbed, the two objectives of this paper were



Fig. 2. IoT testbed components

fulfilled using three testing scenarios which are described in
Table II.

1) Test case 1: scanning ports
In this test case, the network characteristics of the DUI
were analyzed by scanning its ports. This test reported
all the open Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) ports in the device.
Network ports in IoT devices are used to carry out
a specific task such as connecting to a web server or
transferring files, etc. Also, they are used to provide a
service such as broadcasting certain messages. If a port
is open to the network without a firewall, it is vulnerable
to attack.
IoT devices can create encrypted communication ses-
sions while communicating to the server or cloud over
TCP ports. TCP ports must be well secured by a firewall
to prevent attacks. Many low price IoT devices have
weak security capabilities and where their communica-
tion depends on UDP ports, do not use TCP ports at
all. UDP ports do not process received UDP packets
on that port if they don’t match a certain structure. For
example, if the packet received is not one of the expected
commands it will be dropped automatically therefore
making it difficult to inject malicious commands.
Testing was initiated by configuring a device (laptop)
with our IoT testbed GUI. As mentioned above, the
program uses the Nmap command which can report
the test results. The laptop therefore assumed the role
of testing machine (attacker) and auditor, which makes
testbed implementation easier. Then, the IoT device and
the testing machine were connected to a router to create
a local network, which fulfilled the required test case
environment.

2) Test case 2: Network activity and packets analysis
In this test, the testbed was configured to capture packets
from the network. This configuration provided a better
understanding of the network activity of the IoT device
and analyzed the packets send to/received by it. Network
activity of the IoT device means how often it sends
packets, what the contents of the packets consist of and
whether it is encrypted or not. Since Wireshark was not
on the gateway, the packets sent as a broadcast of the
network were able to be investigated.

This configuration does not necessarily define whether
the device is vulnerable or not. Nevertheless, it provided
a better understanding of the device network activity,
which can help with inspections for the existence of
certain attacks on those devices, i.e. when at some future
point the IoT device changes its behavior.

3) Test case 3: intercepting communication (MITM)
As described in test case 2, devices use MAC addresses
for communication within the local network. Two direc-
tions of communication were examined: one between
the IoT device and router and the other between the
IoT device and the controller. Therefore, there were two
sub-tests for this test case:

a) First: Examination of traffic sent between the IoT
device and the router. In this test, more information
about the control messages sent from the device to
servers in the network were obtained (e.g. Cloud,
STMP, etc. ) and vice versa.

b) Second: Examination of traffic sent between the
IoT device and the controller. In this test, those
packets were captured with the control data.

For this situation, Ettercap tool was used to initiate
the ARP spoofing attack between the IoT device and
the router once and then between IoT device and the
smartphone.

4) Additional test: decompiling smartphone application
The security of an IoT device is not limited to how the
device is secured from attacks and has no vulnerabilities.
Security also concerns the server that saves data, updates
firmware, the application that gives the user control over
the behavior of IoT device. Even if the IoT device is well
protected against attacks, any weakness in those devices
or in the communication channels between them will
rescind its security.
Therefore, in this test case, IoT devices were attacked
differently by reverse engineering the smartphone appli-
cation dedicated to IoT. The test was not automated by
the GUI, so was applied manually. It was carried out
using free Android decompiling software. Decompiling
the smartphone application provided us with information
about the control messages used to control the IoT
device, type of encryption used, etc. The amount of
information that can be extracted depends on the level
of encapsulation used in coding the application.

V. IMPLEMENTATION AND RESULTS

In this section, IoT Testbed step up and scenarios were
applied, described in previous sections, on two IoT devices:
smart socket and smart thermostat. The brands of the IoT de-
vices are not exposed to keep the confidentiality of the product.
First, smart socket configuration and testing procedure were
explained, followed by the configuration for the thermostat.

A. Testing smart socket

A smart socket is an electric device that can be plugged
into an ordinary outlet, which is connected to the wireless



TABLE II
TESTING SCENARIOS DESCRIPTION

Description First test case Second test case Third test case
Test de-
scription

Scanning
network ports of
IoT device.

Network activity
and packets anal-
ysis.

Interception of
communication
between the
DUI and the
router and the
triggering device.

Testing
environ-
ment

A local network
is built including
only involved de-
vices and DUI.
No other DUI on
the network.

A local network
was built includ-
ing only involved
devices and DUI.
No other DUI on
the network.

A local network
was built
including only
involved devices
and DUI. No
other DUI on
the network.
Trigger device
was connected to
the network.

Devices
involved

Testing and
auditing device:
Kali OS Laptop
Trigger: None
needed.

Testing and
auditing device:
Kali OS laptop
trigger: None
needed.

Testing and
auditing device:
Kali OS laptop
Trigger: mobile
application.

Tools Nmap: To scan
every UDP/TCP
port and retrieve
data about ser-
vices provided in
open ports.

Wireshark:
Analyzed
network packets.

Ettercap:
To initiate
ARP attack.
Wireshark: To
analyze network
packets.

Initial as-
sumptions

DUI was already
ON before run-
ning the test.

DUI was already
ON before run-
ning the test.

DUI was already
ON before run-
ning the test.

Excepted
results

Information
about the OS of
the DUI. List of
the open UDP
and TCP ports.

Capture packets
sent from the
DUI.

Capture of pack-
ets sent from/to
the DUI.

network of the house so that the user can control devices from
anywhere in the world through an application on a mobile
device. Multiple steps were followed to configure the socket.
Installing any smart socket would have the same scenario.

1) Operating the socket: The socket can be controlled in
two ways:

• Manually, by pressing ON/OFF button. In this case, the
socket toggles its state, then searches for the smartphone
on the network to send a packet with updated status. If the
phone doesn’t exist on the network, the status information
is sent to the server where it can be pushed later to the
smartphone.

• Remotely, using the mobile application. In this case, the
smartphone searches for the socket in the local network,
if it does not exist, it sends the new status to the server.
In each scenario the socket receives the status packet and
updates its status, then sends a packet with the new status
back to the smartphone. The application will not show the
new status until it receives a packet with the new status.

2) Applying the test cases on the socket: Test cases were
launched one by one and the results reported in Table III. The
smart socket with UDP used port 10000 for communication af-
ter executing ”nmap -sS -sU -PN IoT’s IP address” command.

At this stage, it was secure but prone to DoS attack if there
is no firewall blocking DoS attacks. All the communication
to/from the socket was in clear text. Thus, packets could be
fabricated, re-sent or easily modified. It was concluded that
this device was vulnerable.

3) Creating an attack: After examining the test case results
for the smart socket, the control commands sent between the
application and the IoT device were extracted and analyzed.
The socket and the mobile application used Port 10000 for
communication. The socket sent a discovery command ev-
ery few seconds looking for other sockets or the controller
smartphone in the local network. Also, using the application
to toggle the status of the device, allowed us to capture a
copy of the control packets and extract the control message
format. Since all the data was sent in clear text by fabricating
a packet with message control, the smart socket was able to be
controlled. There were three main commands sent: Discover
= 0x7161, Subscribe= 0x636c and Control =0x6463. At the
end, It was possible to control the socket remotely and not
through it’s official app, but through an unauthorized third-
party machine.

TABLE III
TEST CASES RESULTS FOR SMART SOCKET

Test case Observations Vulnerabilities
Test 1: Port Scanning Only UDP ports are

open and the rest is
closed.

Secure but It is prone
to DoS attack.

Test 2: Network
Activity and Packets
Analysis

Sends status as broad-
cast with clear text.

Vulnerable

Test 3: MITM – Part
1: IoT and Router

Sends status in
clear text. Failed to
communicate with
the server.

Vulnerable

Test 3: MITM – Part
2: IoT and Applica-
tion

Sends commands in
clear text.

Vulnerable

B. Testing the smart thermostat
A smart thermostat is an electric device that allows control

of water heater temperature. It connects to the wireless net-
work of the house so that the user can control the device from
anywhere in the world through an application on a mobile
device. The following steps were carried out to configure the
smart thermostat:

1) Operating the smart thermostat: The thermostat can be
controlled in two ways:

• Manually from the device which can change the status in
the cloud.

• Remotely, using the mobile application.
2) Applying test cases on smart thermostat: The results of

launching the test cases are reported in Table IV.The setup
for the IoT security testbed should be the same for each case,
but unexpectedly, the thermostat did not connect to the AP
dedicated for testing, nor to another virtual access point set
up on the personal laptop. Fortunately, our smartphone where
the application was running was able to connect to the router.



Since it was possible only to connect the smartphone to the
router, the testing environment features changed and so the test
cases for Nmap and MITM steps. It was planned to monitor the
traffic received and sent from the smartphone and thermostat
Application specifically. MITM attack was applied between
the smartphone and the router with the following results:

• Data in the packets were encrypted
• IoT device was secure against ARP spoofing

The drawback of ARP spoofing is that it is easy to detect.
The thermostat server detected duplication of the addresses. As
a result, the app shut down immediately and disconnected the
phone automatically from the router. After several minutes, it
was possible to connect to the router again but the application
refused to initiate any connection through the router. In decom-
piling the thermostat Android application, It was found that all
the scripts had non-descriptive variable names and the code
structure was intentionally made to keep all implementation
code hidden.

TABLE IV
TEST CASES RESULTS FOR SMART THERMOSTAT

Test case Observations Vulnerabilities
Test 1: Port Scanning - -
Test 2: Network
Activity and Packets
Analysis

All data are
encrypted.

Not vulnerable

Test 3: MITM – Part
1: Application and
router

Blocked network be-
cause it detected the
attack.

Not vulnerable

Test 3: MITM – Part
2: Application and
server

Blocked the network
because it detected
the attack.

Not vulnerable

Test 4 (Manual): De-
compiling application

Control commands
were extracted easily.

Not vulnerable

VI. CONCLUSION AND FUTURE RESEARCH

This research demonstrated that IoT devices are vulnerable
to attacks due to cheap or defected designs. Our objective
was to demonstrate accurate techniques for investigating the
weaknesses of IoT devices. Specifically, the goal of this re-
search was to detect and test security gaps in two IoT devices,
a smart socket and smart thermostat. Various security testing
tools were used for vulnerability scanning, password cracking,
capturing wireless and network packets, and finding open ports
in the network. The results provided knowledge regarding the
feasibility and practical experiments for assessing common
dangerous threats against these IoT devices. Our results were
limited to three IoT devices: a router, smart socket and smart
thermostat.

Future studies will include additional automated test cases
and scenarios that can tackle different aspects of security of
IoT devices. More IoT devices need to be analyzed to enlarge
the base of our IoT Testbed structure and more test cases
need to be included to test these IoT devices. Also, future
goals include employing artificial intelligence to improve the
methods for analyzing IoT devices and its vulnerabilities.

ACKNOWLEDGMENT

This work is an initiative of the testbed laboratory at the
University of Sharjah and was sponsored by the Dubai Elec-
tronic Security Center (DESC). Our gratitude for OpenUAE
Research and Development Group for their usual support.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet Things J., vol. 1, no. 1, pp.
22–32, 2014.

[2] B. B. Gupta, ”Computer and cyber security: principles, algorithm,
applications, and perspectives”. CRC Press, 2018.

[3] J. A. Jerkins, “Motivating a market or regulatory solution to IoT
insecurity with the Mirai botnet code,” in 2017 IEEE 7th Annual
Computing and Communication Workshop and Conference (CCWC),
IEEE, 2017, pp. 1–5.

[4] Ye. Mengmei, Jiang. Nan, Yang. Hao and Yan. Qiben, “Security analysis
of Internet-of-Things: A case study of august smart lock,” in 2017
IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS), 2017, pp. 499-504.

[5] Gyory. Nathaniel and Chuah. M, “IoTOne: Integrated platform for
heterogeneous IoT devices,” in 2017 International Conference on Com-
puting, Networking and Communications (ICNC), IEEE, 2017, pp. 783-
787.

[6] Prokofiev. Anton O, Smirnova. Yulia S, Surov. Vasiliy A, “A method to
detect Internet of Things botnets,” in 2018 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus),
2018, pp. 105-108.

[7] Sachidananda. Vinay, Siboni. Shachar, Shabtai. Asaf, Toh. Jinghui,
Bhairav. Suhas and Elovici. Yuval, “Let the cat out of the bag: A
holistic approach towards security analysis of the internet of things,”
in Proceedings of the 3rd ACM International Workshop on IoT Privacy,
Trust, and Security, 2017, pp. 3-10.

[8] Chistiakov. Sergei and others, “Secure storage and transfer of data in a
smart lock system,” 2017.

[9] Ammar. Mahmoud, Russello. Giovanni and Crispo. Bruno, “Internet
of Things: A survey on the security of IoT frameworks,” Journal of
Information Security and Applications, Elsevier, vol. 38, pp. 8–27, 2018.

[10] Willingham. Thomas, Henderson. Cody, Kiel. Blair, Haque. Md Shariful
and Atkison. Travis, “Testing vulnerabilities in bluetooth low energy,”
in Proceedings of the ACMSE 2018 Conference, ACM, 2018, p. 6.

[11] Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, and X. Fu, “Security Vulnera-
bilities of Internet of Things: A Case Study of the Smart Plug System,”
IEEE Internet Things J., 2017.

[12] Z. Ling, K. Liu, Y. Xu, Y. Jin, and X. Fu, “An End-to-End View of
IoT Security and Privacy,” in GLOBECOM 2017-2017 IEEE Global
Communications Conference, 2017, pp. 1–7.

[13] Y. Seralathan et al., “IoT security vulnerability: A case study of a Web
camera,” in Advanced Communication Technology (ICACT), 2018 20th
International Conference on, 2018, pp. 172–177.

[14] H. Xu, F. Xu, and B. Chen, “Internet Protocol Cameras with No
Password Protection: An Empirical Investigation,” in International Con-
ference on Passive and Active Network Measurement, 2018, pp. 47–59.

[15] L. Huraj, M. Simon, and T. Horák, “IoT Measuring of UDP-Based
Distributed Reflective DoS Attack,” in 2018 IEEE 16th International
Symposium on Intelligent Systems and Informatics (SISY), 2018, pp.
209–214.

[16] S. Siboni, A. Shabtai, and Y. Elovici, “Leaking data from enterprise
networks using a compromised smartwatch device,” in Proceedings of
the 33rd Annual ACM Symposium on Applied Computing, 2018, pp.
741–750.

[17] J. Classen, D. Wegemer, P. Patras, T. Spink, and M. Hollick, “Anatomy
of a Vulnerable Fitness Tracking System: Dissecting the Fitbit Cloud,
App, and Firmware,” Proc. ACM Interactive, Mobile, Wearable Ubiqui-
tous Technol., vol. 2, no. 1, p. 5, 2018.


